

2023-地震学算法与程序培训班

S波接收函数通用提取策略原理及其应用

中国科学院 广州地球化学研究所 2023年07月25日

中国科学院广州地球化学研究所

欢迎老师来指导、交流 深地过程与战略矿产资 欢迎学生报考 源重点实验室(重组)

一、研究背景

- 二、方法思路
- 三、应用实例
- 四、展望

一、研究背景:岩石圈厚度-地质演化过程的钥匙

Cawood et al., 2013 不同时期的块体对应不同的岩石圈厚度

一、研究背景:不同岩石圈属性的定义

Ammon et al., 2021, 陈凌老师课件

一、研究背景:不同岩石圈属性的定义

- **力学岩石圈**(Mechanical lithosphere):与对流的软流圈完全隔离的地球最外层刚性部分。 在典型地幔应力条件下(1MPa),经地质时间尺度(10⁸年)其变形不超过1%(板块构造理 论);
- **热岩石圈**(Thermal lithosphere):具有热传导温度梯度的地球外壳,热传导地温线与地幔 绝热地温线相交的深度定义为岩石圈底界面,其中与地幔绝热线对应的地表温度(地幔 潜在温度, potential temperature) Tm的选取范围为1200°C-1450°C,多为1300°C;
- **地震学岩石圈**(Seismic lithosphere):由地震波速定义,指位于低速软流圈上的高速盖层;
- **弹性岩石圈**(Elastic lithosphere):在负载作用下,百万年时间尺度上表现为完全弹性的地球外层部分;
- 化学岩石圈(Chemical lithosphere):由于化学成分上的差别而比软流圈轻的,同时缺水的,因而稳定的具有低流变性的地球外壳,又称为化学边界层;
- **岩石学岩石圈**(Petrological lithosphere):由岩石矿物成分的变化来定义岩石圈和软流圈,如将元素Y在石榴石中的亏损与富集作为指标,石榴石中Y含量在10 ppm以下的为岩石圈特征,否则为软流圈特征;
- **电性岩石圈**(Electric lithosphere):岩石圈的导电性与温度有着极其密切的关系,随温度 增加而迅速增大。岩石圈在与软流圈的分界面处表现为导电性的迅速增加。

一、研究背景:本课题组有关岩石圈厚度探测的工作

一、研究背景:地震学是岩石圈厚度探测的主要方法

Hopper et al., 2014 **联合反演**

50 100 150 200 250 300 岩石圈厚度(km) Hoggard et al., 2020

Zhao et al., 2012

噪声面波层析成像

SS前驱波

Schmerr, 2012

一、研究背景:S波接收函数是探测地震学LAB的主要方法

Fischer et al., 2011

Zhang et al., 2014

一、研究背景:S波接收函数是探测地震学LAB的主要方法

一、研究背景:不同团队在同一区域的研究结果差异很大

四川盆地

Hu et al. 2011, EPSL

Zhang et al. 2010, EPSL

张耀阳等, 2018, 地球物理学报

-、研究背景:不同团队在同一区域的研究结果差异很大

一、研究背景:不同人同一数据获得的结果也存在差异性

国际合作与交流项目 (2017-2018)

≻ 提取非常依赖经验
≻ 好的结果难以复现

Lev Vinnik 团队

Time to S (s)

能否提出一种能被有效复现的通用提取策略?

Zhang & Deng, 2022, Gcubed

Inci_Ang:从ZRT旋转到LQT坐标系的入射角 Win_Len:反褶积计算时使用Q分量的波形时窗长度

Kumar et al., 2006

Time (s)

-10

τυ

40 50

时窗大度

青藏高原台站ST09数据测试

脉冲反褶积计算SRF的现状

优点:

- ➢ SLp震相具有较高的 相对振幅
- ➢ 在SRF方法发展的早期使用广泛

缺点:> 缺乏维护> 可移植性差

SeismicHandler

传统质量控制

3 问题3. SRF的质量控制方法

主要依靠手动筛选 —— 个人经验主导,很难重现

前人探索2:振幅比质量控制准则 LQR = RMS(L[t₃ t₄]) / Max(Q[t₁ t₂]), (1)

 $AMP = RMS(SRF[t_5 t_6]), \qquad (2)$

Shen et al., 2019

二、研究思路

Coef_{SRF}(Inci_Ang, Win_Len) = CC[SRFref, SRF(Inci_Ang, Win_Len)],

Zhang & Deng, 2022, Gcubed

二、研究思路

二、研究思路

具体操作流程

详见案例展示

二、研究思路:1维模型理论测试

理论测试1:

1-D 速度模型全波场测试

Zhang & Deng, 2022, Gcubed

研究思路: 1维模型理论测试

反褶积结果中Sp转换震相清晰可见

理论测试2: 伪2-D剖面偏移成像 完全重现理论模型

处理流程:

1.设定10个**虚拟台站**,构建 2-D速度模型;

2.基于QSEIS**计算理论地震图**;
3.GC SRF获取稳定SRF并使

3.GC_SKF获取稳定SKF并使用基于波动方程的成像技术进行偏移成像。

Zhang & Deng, 2022, Gcubed

研究思路:2维模型理论测试,不同速度

5

Reference Velocity Models

200

250

24

26

28

Latitute (degree)

-0.2

-0.4

32

Qseis Mig Freq 0.05-0.5Hz

30

三、应用实例:青藏高原东南缘 感谢中国地震局地球物理所提供的数据

基于RMSE大小对道集重排序, RMSE比例为30%

SC.MGU

扬子西缘GC_SRF的偏移成像结果

四川盆地

MLD ~100 km LAB 150~160 km

川滇地块

LAB不清晰 难以追踪识别

腾冲火山 LAB ~90 km

三、MLD在其他区域的探测

正演

判断是MLD而不是旁瓣

LAB深度	振幅比:Amp(旁瓣
(km))/Amp(Smp)
90	-0.221201
100	-0.227492
110	-0.236176
120	-0.237383
130	-0.244824
140	-0.247147
150	-0.243042
160	-0.243930
170	-0.247538
180	-0.248319
190	-0.247777
200	-0.243498

旁瓣与NVG信号的混叠分析 (通过振幅比进行旁瓣测量)

判断是MLD而不是旁瓣

三、应用实例:青藏高原东南缘峨眉山大火成岩省地球物理特征

三、应用实例:青藏高原东南缘峨眉山大火成岩省地球物理特征

Moho depth variation in southern California from teleseismic receiver functions L Zhu, H Kanamori - Journal of Geophysical Research: Solid ..., 2000 - Wiley Online Library The number of broadband three-component seismic stations in southern California has more than tripled recently. In this study we use the teleseismic receiver function technique to determine the crustal thicknesses and Vp/Vs ratios for these stations and map out the lateral variation of Moho depth under southern California. It is shown that a receiver function can provide a very good "point" measurement of crustal thickness under a broadband station and is not sensitive to crustal P velocity. However, the crustal thickness estimated only from ... Save 50 Cite Cited by 1728 Related articles All 16 versions

1.证明正支震相的存在性

2. 推导走时解析表达

震相走时的解析表达式

Zhu and Kanamori, 2000

Zhang and Deng, 2023, Prepared

3. 解析式的图像表示

经典的 $H - \kappa$ 方法

 $ML - \kappa$ 叠加方法

四、展望:单台岩石圈厚度估计ML-k理论测试

理论模型测试:Model_3L

M-κ Stacking # 2022-10-10 11:43:46.117040 # [Model_3L(C)]

1.0

0.5

0.0

-0.5

-1.0

1.00

0.95

0.90

0.85

0.80

0.75

1.0

0.5

0.0

-0.5

-1.0

1.00

0.95

0.90

0.85

0.80

0.75

Zhang and Deng, 2023, Prepared

Zhang and Deng, 2023, Prepared

理论测试5/5

四、展望:岩石圈速度反演Joint RFSW

Zhang and Deng, 2023, Prepared

Zhang and Deng, 2023, Prepared

四、展望:岩石圈速度反演Joint_RFSW前人研究

三、展望:岩石圈速度反演Joint_RFSW

四、展望:岩石圈速度反演Joint_RFSW理论测试

四、展望:岩石圈速度反演Joint_RFSW实际数据测试

Joint inversion test @ SC_AYU # 2022-10-30 13:46:40.425557

联合反演结果

Joint inversion test @ HN_JIS # 2022-10-29 07:16:16.141104

Zhang & Deng, In preparation

四、展望:岩石圈速度反演Joint_RFSW实际数据测试

Joint inversion test @ HN_SHY # 2022-10-29 11:50:15.258422

Joint inversion test @ GD_NAO # 2022-10-29 07:28:51.692328

联合反演结果

Zhang & Deng, In preparation

四、展望:单台站地区的应用

长白山火山区

火星InSight SEIS数据

未来会给出更详细的报道

- ▶ 提出了一种基于波形互相关的S波接收函数提取策略GC_SRF,该策略可以避免 人为因素的干扰。后期会在该基础上进一步发展ML-k,和Joint_RFSW方法, 未来有机会再详细展示结果和算例。
- ➤ S波接收函数偏移成像结果显示四川盆地下方LAB可能达到160km处,且有 MLD;腾冲火山下方的LAB在90km附近,而川滇块体下方的岩石圈界面特征 并不显著,推测与地幔柱作用后岩石圈增生有关。
- ➢ GC_SRF主要缺点:需要长期观测数据(短周期台站很难应用);如果数据都很差,也会得到一个结果,可能就不对了。

谢谢! 敬请批评指正!

邓阳凡: yangfandeng@gig.ac.cn 张周: zhangzhou3@gig.ac.cn